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Abstract

The Morpho protocol is built on top of existing pool-based lend-
ing protocols, improving rates for both lenders and borrowers while
preserving the same liquidity and liquidation parameters. This paper
aims to provide a detailed description of the Morpho protocol, notably
the innovative mechanisms that make it work, along with invariants
and theorems about it.
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Introduction
This paper, referenced as the yellow paper, assumes that the reader is famil-
iar with the general idea behind the Morpho protocol. To strengthen their
intuition about the Morpho protocol, the reader may first go through the
white paper [DFB+21].

Compound and Aave ([GWPK20, PWXL20]) have established themselves
as the current standard for decentralized lending protocols over the past
years. These protocols, operating autonomously on-chain, implement a liq-
uidity pool that offers strong liquidity guarantees and floating rates. Differ-
ent protocols have been designed to improve on PLFs, protocols for loanable
funds, in different aspects. One of these aspects is going from floating to
fixed rates, and many protocols are tackling this issue. For example, AP-
Wine [APW22], Sense [Sen22], and 88mph [88m22] allow the user to trade
their yield. Yield Protocol [RN20] and Notional [Not22] define a similar
concept to collateralized zero-coupon bonds.

The Morpho protocol, for its part, leverages the composability and liq-
uidity of existing PLFs, to create efficient and liquid peer-to-peer markets of
supply and borrow positions with near-zero spread. The claim is that Mor-
pho strictly improves pool-based liquidity protocols from an individual user
perspective. In particular, Morpho has the same liquidation parameters and
benefits from the same liquidity of the underlying protocols.

The first goal of this paper is to provide a comprehensive description of
the Morpho protocol and its unique mechanisms. Then, to demonstrate the
claims, this paper will provide mathematical properties and proofs about
the logic underpinning the protocol. The aim is to bring transparency while
educating and providing trust for the community to the key variables and
invariant assumptions it utilizes.

The paper structure is as follows. In section 1, we detail the logical
framework we place ourselves into. Our formalization is based on a tran-
sition system with transition functions written in pseudo-code. Section 2
describes the on-chain environment that will be useful for Morpho, including
the involved contracts’ functions. Section 3 details the structure and opera-
tion of Morpho, giving us a basis to analyze and prove some of its relevant
invariants. Section 4 looks at the matching engine at the heart of the pro-
tocol, allowing matching and unmatching users when needed. The matching
engine is voluntarily left abstract. The intent is to allow for different im-
plementations. Section 5 focuses on the interest rates mechanism and their
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associated accounting. Finally, section 6 presents the delta mechanism al-
lowing the protocol to scale despite the limited computation power available
in a blockchain setting.

An emphasis is put on the correctness of the protocol, and different as-
pects of it are detailed along the way: balances integrity, covering borrow,
supply, and aggregated peer-to-peer integrity, Morpho’s positions integrity
on the pool, as well as the liquidity of the positions.
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1 Logical framework
In this first section, we aim to give a high-level description of the setting
to reason about the Morpho protocol and its environment. We first detail
the basic functionalities of the blockchain that we will build upon, which
allows us to then describe our formalization of the blockchain in terms of a
transition system. The formal description is close to the code, with sufficient
details for describing invariants and proofs.

1.1 Definitions
We place ourselves in the blockchain setting where we have access to a set
of addresses A. An address1 a ∈ A refers either to a contract or a user.
For the sake of simplicity, the term ‘user‘ and the address associated with
their account on the blockchain will be used interchangeably throughout this
yellow paper.

Contracts are defined by their state variables and functions, similar to at-
tributes and methods in object-oriented programming. From its deployment,
a contract stores its variables, which are modified later by the function calls
made by the users. Types take one of the following form:

• Primitive types T : booleans (B), integers (N), real numbers (R), non-
negative real numbers (R+) and addresses (A). Notice that instead of
using fixed-point arithmetic, we introduce real numbers to model the
variables in question.

• Products T1 × T2 of two primitive types, T1 and T2: pairs of a value in
T1 and a value in T2. We will denote products by separating the values
by commas. We identify products up to associativity such that we can
omit parenthesis to disambiguate the order of a product: T1× (T2×T3)
is the same as (T1 × T2)× T3 and will be written as T1 × T2 × T3.

• Mappings T1 → T2 from a primitive type T1 to a type T2: vectors of
the space of sequences indexed by T1 with values in T2. For a mapping
m and a key i, m(i) describes the value associated to i in m. If v is in
T2, then m[i 7→ v] refers to the mapping m where the value associated
to i is v instead of m(i).

1in EVM instances: 160 bits identifiers
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Each contract has its own set of variables, which we will call the contract’s
storage, accessible through its address. We place ourselves in a simpler
setting where the storage is the association of variables to their values for all
the variables of all the contracts. Storage variables are thus directly accessible
through their name in the storage. In this way, the mapping notation will
also be used for storage, so for κ as the storage, the notation κ(i) refers to
the value of the variable i stored in κ. To keep the notation concise, we often
omit the storage and write i for the value of the variable i.

Functions may read and modify storage variables, and we model this
behavior by a transition system.

1.2 Transition system
The blockchain can be seen as a transition system where the state consists of
the storage and the time, and the transition function is determined from the
functions of the contracts. We use the following notations when a function
f is called:

• d ∈ Df is the function input given by the caller, Df is the domain of f

• σi ∈ Σ is the current state, Σ is the set of states

• r ∈ Rf is the output of the function, Rf is the image of f

• σr ∈ Σ is the new (changed) state.

f : Df → Rf

The transition function Γ is defined in the following way. For each function
call, we add a transition from σi to σr labeled by (d, r). All the transitions
added for f can be described as a transition function Γf , where Γf (d, σi) =
(r, σr).

Γf : Df × Σ→ Rf × Σ
Some function calls are only possible in some contexts for a particular con-
figuration of the current state. In such a case the transition is not added.
Moreover, some functions are defined by calling other functions. When the
call of the callee function does not correspond to a transition, the call of the
caller function also does not correspond to a new transition. This behavior
mimics error handling in programming languages.
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Example 1.2.1. Let’s give the example of a contract with user accounts and
authorizations that is inspired from Unix systems. To be concise, we omit
the particular implementation, and suppose that:

• In the initial state there are 3 normal accounts, account A, B and C.
The account B is the owner of the contract.

• There is a function su that takes an account as an input parameter and
promotes it to root. This function is only defined for the owner.

• There is a function exit that takes a root account as an input parameter
and demotes it to a normal account.

• There is a function userdel that takes two accounts as input parame-
ters. This function is only defined when the first account is root, and
deletes the second account when this is the case. To limit the number of
accessible states, we only define this function when the deleted account
is the account C.

The following figure represents this transition system. We label each tran-
sition with its corresponding function call for clarity and omit the returned
value (as it is unused).

Notice that the user A is not able to become root, this is represented by the
absence of a transition from state 1 to state 5. This means that if the user A
tries to call a function that batches su, userdel and exit (equivalent to the
command sudo userdel C), this call would fail.

Function calls do not change the time parameter, and we add one transi-
tion function that changes the time:

Γtick : 1× Σ→ 1× Σ

with Γtick(0, (t, κ)) = (0, (t+ 1, κ)). We used the notation 1 for the singleton
set containing 0. Thus, for a given path, multiple states can have the same
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time parameter. If we go back to the blockchain setting, this is useful to
model the evolution of the storage inside one particular block. To keep it
simple, we will write the time parameter as a subscript when there is no
ambiguity about which storage it refers to or omit the time entirely when it
is irrelevant. We will also allow ourselves to use the notation of the storage
directly to the state. Notably, for σ = (t, κ), the notation σ(i) refers to κ(i).

Example 1.2.2. Consider a counter contract, whose storage is made of a
single integer i ∈ N, and which has a single function incrementBy, that
increments a variable i by an input parameter n ∈ N and returns the new
value. Here we have DincrementBy = N, RincrementBy = N, and:

ΓincrementBy(n, σ) = (σ(i) + n, σ[i 7→ σ(i) + n])

In the following, we will only consider the transition functions Γf asso-
ciated to a computable function f . Such functions can be described more
simply by pseudo-code, where σi and σr store respectively the values of all
the variables before and after the function call, and d and r are the input and
the output of the function. When defining these functions, we will specify
their domain and codomain (Df and Rf ) and assume that the function has
access to the state.

Example 1.2.3. The previous example could be more easily described by the
following pseudo-code:

function incrementBy(n):
i += n
return i

Example 1.2.4. Define view functions2 as functions that can read the state
but cannot modify it. A function f is a view function if and only if for each
argument d and storage σ, the second element of the pair Γf (d, σ) is σ.

2Inspired by Solidity’s state mutability, as discussed in the Solidity documenta-
tion [sol22].
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2 On-chain environment
The Morpho protocol uses two types of contracts: tokens3 and PLFs, which
are pool-based liquidity protocols. They constitutes the on-chain environ-
ment of Morpho, and we discuss the inner workings of such contracts in this
section.

2.1 Tokens
Tokens are contracts that represent a transferrable store of value. We call Θ
the set of tokens.

2.1.1 Storage

A token contract stores balances, which represent the amount held by each
user.

Balances: The variablem, called the balances, is a mapping from addresses
to real numbers.

m : A→ R+

2.1.2 Functions

A token contract can transfer funds from one address to another.

Transfer: Transfer amount ∈ R+ of the token balance of an address from ∈
A, to another address to ∈ A, where amount ≤ m(from).

transfer : A× A× R+ → 1

A simple implementation of the transfer function could look like the following:
transfer(from, to, amount):

if amount > m(from):
raise error

m(from) -= amount
m(to) += amount

3For EVM instances, ERC20 tokens [VB15].
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Remark that the transfer is only possible when the sender has sufficient funds.
In this case, it does not correspond to a new transition in the transition
system.

2.2 Protocol for loanable funds
Let Ψ be the set of protocols for loanable funds4. For each contract ψ ∈ Ψ, we
note Θψ the subset of Θ of tokens available for lending and borrowing in ψ.
A protocol ψ ∈ Ψ should make available, for each token θ ∈ Θψ, user entry
points with functions to lend, borrow, withdraw lent funds, repay borrowed
funds, and liquidate a position. In the following, we set the protocol ψ, which
allows us to omit it in the notation. To be concise, we use the subscript
notation to denote a function taking a token as an argument.

2.2.1 Storage

The storage of a protocol for loanable funds should store the balances of the
borrowers and of the suppliers. It should also store the collateral factors of
assets, which define the maximum debt a user can maintain. Liquidation of
the position can happen if this limit is reached. See subsection 2.2.3 for more
details about the liquidate function.

Collateral factor: For a given asset, the collateral factor5 represents the
maximum share of the value of the collateral that can be borrowed with this
as collateral. The collateral factor values are fixed between 0 and 1, with 0
for assets that are not accepted as collateral6.

F : Θψ → [0, 1]

Example 2.2.1. Alice deposits 1000 DAI (worth 1000$) on Compound, whose
collateral factor is 80%. Alice can now borrow up to 800$ worth of assets.

4Aave and Compound belong to Ψ.
5Name given by Compound, Aave uses liquidation threshold (LT)
6For example, USDT at present on Aave and Compound



2 ON-CHAIN ENVIRONMENT 12

Rates: Supply and borrow rates, rS and rB, respectively, represent the
growing speed of the balances per unit of time7:

rS : Θψ → R+

rB : Θψ → R+

Example 2.2.2. If Alice deposits 1000 DAI, and rSDAI = 0.01, after 10 units of
time (second or block depending on the protocol), the accrued interest would
be 1000× (1 + rSDAI)10 = 1104.62.

Balances: The balances are mappings reflecting the users’ balances, in a
unit that grows in underlying value, at a speed that depends either on the
supply rate rS for the supply balance s or on the borrow rate rB for the
borrow balance b.

s : A→ Θψ → R+

b : A→ Θψ → R+

Indexes: The supply and borrow indexes, λS and λB, respectively, are the
exchange rates between stored balances in the scaled unit and underlying
tokens. According to the interest rate model, they constantly grow with time
at a speed that depends on rS and rB, respectively, to accrue the interests
of suppliers and borrowers. The amount of underlying tokens corresponding
to an amount in the scaled unit is obtained by multiplying this last one by
the corresponding index.

λS : Θψ → R+

λB : Θψ → R+

Having indexes to track interest rate accrual is particularly suitable in
a blockchain environment, where computations are limited. It removes the
need for an active accounting of interest accrual for every account or a history-
based accounting required in a variable rate setting. By updating the indexes
before each time that the rate changes, all users have their interests accrued
at once.

7Second for Aave, and block for Compound
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Example 2.2.3. We expand on the previous example. Alice deposits 1000
DAI and, initially, the index λSDAI is equal to 2, so her supply balance sDAI(Alice)
is 1000 / 2 = 500.
After 10 units of time, the index λSDAI becomes 2 · (1 + rSDAI)10 = 2.20924. So
her underlying balance is now:

sDAI(Alice) · λSDAI = 500 · 2.20924 = 1104.62 DAI

We first describe how the storage is managed internally, with the so-called
utils functions, before describing the main entry points made accessible to
the users.

2.2.2 Utils Functions

Update rates: The function update r updates the rates for one market
depending on the utilization rate8.

update r : Θψ → 1

Update indexes: The function update λ updates exchanges rates between
users’ balances and underlying tokens, depending on the rates since the last
update.

update λ : Θψ → 1

Exchange rates are constantly updated before rates change.

Price oracle: The oracle function p returns the current price of an asset.
It corresponds to an estimated price in a fixed normalizing asset or currency.

p : Θψ → R+

The price oracle gives a way to compute the value of a particular asset.
Oracles are provided by a source that is external to the lending pool and can
be updated at regular intervals or according to the relative change in value.
Decentralization, trust, and reliability are essential properties of the oracles,
and the integrity of protocols such as the PLFs depends on them9. Popular
oracles include the ChainLink oracle [SEN17] and the Uniswap oracle [Tea].

8See Compound’s documentation [Com22], and Aave’s documentation [Aav22] for the
specific calculations

9Price manipulations should be considered a source of risk for the protocols that depend
on oracles.
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Borrowing capacity: The function borrowing capacity computes and
returns the borrowing capacity (in value) of a given user, which is the amount
that can be borrowed in addition to the user’s current debt.

borrowing capacity : A→ R

This function first updates all the indexes it needs to access by calling the
function update λ on the respective markets. It then computes its result
according to the following formula:

borrowing capacity(a) =
∑
θ∈Θψ

sθ(a) · λSθ · pθ · Fθ −
∑
θ∈Θψ

bθ(a) · λBθ · pθ

2.2.3 Main Entry Points

In the following functions, the address ψ refers to the address of the under-
lying protocol for loanable funds ψ.

Supply 10: The supply function is used to deposit an amount amount ∈ R+
of tokens θ ∈ Θψ into the protocol, which begins accumulating interests at
the supply rate.

supply : Θψ × A× R+ → 1

A standard implementation is given by:
supplyθ(user, amount):

update_λθ()
transferθ(user, ψ, amount)
sθ(user) += amount / λSθ
update_rθ()

Remark that because the transfer function can raise an error, some calls
to supply can also raise an error. It happens when the user has insufficient
funds, and we do not add a new transition in the transition system in this
case.

10Compound calls it mint in reference to the fact that cTokens are minted during this
operation, and Aave calls it deposit.
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Borrow: The borrow function is used to borrow an amount amount ∈ R+
of tokens θ ∈ Θψ from the protocol.

borrow : Θψ × A× R+ → 1

An implementation enforcing the borrowing limit could look like the fol-
lowing. Note that we should also ensure that the amount is less than the
available supply.
borrowθ(user, amount):

update_λθ()
if amount * pθ ≤ borrowing_capacity(user):

transferθ(ψ, user, amount)
bθ(user) += amount / λBθ
update_rθ()

Withdraw 11: The withdraw function is used to withdraw previously sup-
plied assets to the protocol 12.

withdraw : Θψ × A× R+ → 1

The following implementation makes sure that the amount withdrawn is
small enough such that the borrowing capacity is still greater than 0.
withdrawθ(user, amount):

update_λθ()
if amount * pθ * Fθ ≤ borrowing_capacity(user):

transferθ(ψ, user, amount)
sθ(user) -= amount / λSθ
update_rθ()

Repay: The repay function is used to repay some accumulated debt to the
protocol.

repay : Θψ × A× R+ → 1

The following implementation enforces that users do not repay more than
their current debt (what has been borrowed plus the accrued interest).

11Compound calls it redeem.
12Note that this can be seen as converting c/aTokens into underlying tokens.
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repayθ(user, amount):
update_λθ()
if amount ≤ bθ(user) * λBθ :

transferθ(user, ψ, amount)
bθ(user) -= amount / λBθ
update_rθ()

Liquidate: The function liquidate liquidates a user’s undercollateralized
position. A liquidator repays a part of the user’s debt and receives a part of
the corresponding collateral backing the debt as an incentive. This process
aims to deleverage the position to a safe debt ratio.

liquidate : Θψ ×Θψ × A× A× R+ → 1

A call to liquidate(θb, θc, user, liquidator, toRepay) requires the
position of user to be undercollateralized. The toRepay parameter is the
amount of debt that the liquidator repays on behalf of the user. This
amount should not represent more than a fraction of the borrowed tokens θb.
The close factor13 variable closeFactor is a value between 0 and 1 repre-
senting this fraction.

The incentive for the liquidator is to be able to seize an amount toSeize
of the collateral tokens θc of the user that is greater (in value) than the debt
repaid. The ratio of the seized collateral (in value) over the repaid debt (in
value) is defined as the liquidationIncentive14 parameter, a parameter
greater than 1.

Here is a possible implementation of the liquidate function:

liquidate(θb, θc, user, liquidator, toRepay):
update_λθb()
update_λθc()
borrows = bθb(user) * λBθb
if borrowing_capacity(user) < 0 and

toRepay ≤ borrows * closeFactor:

13Name used by Compound and Aave, even though Aave has two values for it, depending
on how “dangerous” the position is considered. See Compound’s documentation [Com22]
and Aave’s documentation [Aav22].

14Aave calls it the liquidationBonus.
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toSeize = (toRepay * pθb / pθc) * liquidationIncentive
repayOnBehalfOfθb(user, liquidator, toRepay)
withdrawOnBehalfOfθc(user, liquidator, toSeize)

where repayOnBehalfOf and withdrawOnBehalfOf are the functions repay
and withdraw but with the liquidator acting as the user for the transfer.
Concretely, those functions take an additional parameter liquidator used
to replace the user in the underlying transfer call of those functions. For
instance, the withdrawOnBehalfOf function changes the line

transferθ(ψ, user, amount)

into the line
transferθ(ψ, liquidator, amount)

The purpose of the closeFactor is to ensure that an undercollateralized
position does not get liquidated entirely. A liquidator has to use multiple
calls with smaller amounts, potentially bringing the position gradually closer
to a safe debt ratio.

We say that a position is insolvent when the value of the position’s debt
is greater than the value of the position’s collateral. In that case, the bor-
rower can leave with the borrowed assets as there is no incentive to repay.
Therefore, insolvent positions are a liability for the protocol and should be
avoided. Liquidations help to solve this issue by targeting positions with a
negative borrowing capacity, trying to move them away from insolvency. A
position is implied to be safe when its borrowing capacity is positive. There
is a gap between safe and insolvent positions, which can be used as a metric
to gauge how dangerous a position is.

Suppose a position is at the limit of insolvency and liquidation happens.
Because of the liquidationIncentive factor, the liquidation removes more
collateral than borrowed assets. The position is now insolvent. This example
shows that liquidation does not always help put the position back in the safe
zone, and we want to know when it is the case. To that end, let us first define
the total value of the borrowed assets B by:

B =
∑
θ∈Θψ

bθ(user) · λBθ · pθ

and the total value of the supplied assets S by:

S =
∑
θ∈Θψ

sθ(user) · λSθ · pθ
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Lemma 2.2.1. The ratio B
S

decreases after a liquidation if and only if this
ratio was under 1

liquidationIncentive before the liquidation.

Proof. After liquidation, the quantity B
S

decreases when:

B

S
>

∑
θ∈Θψ
θ 6=θb

bθ(user) · λBθ · pθ + (bθb(user) · λBθb − toRepay) · pθb

∑
θ∈Θψ
θ 6=θc

sθ(user) · λSθ · pθ + (sθc(user) · λSθc − toSeize) · pθc

>
B − toRepay · pθb

S − toRepay · pθb · liquidationIncentive

which is equivalent to

−B · toRepay · pθb · liquidationIncentive > −S · toRepay · pθb

and to
B

S
<

1
liquidationIncentive

�

In the following, we will write T for 1
liquidationIncentive . Suppose a user

is liquidatable with a ratio B
S

that is under T . Then, we know that after
one liquidation, the ratio has decreased. Either the user is back in the safe
zone, or its position is still liquidatable with a ratio that is still under T .
Consider now multiple liquidations happening one after the other on the
user’s position. Since there is an upper bound on the ratio B

S
, we know the

user will run out of borrowed assets before running out of collateral. So, if it
is impossible to liquidate anymore, then either there are no more borrowed
assets to repay, or the position is not liquidatable anymore. Either way, the
result is a solvent position.

Suppose now that a user is liquidatable with a ratio over T , and consider
multiple liquidations happening on its position. The ratio will keep growing.
Hence the user’s position will stay liquidatable, and the liquidations will stop
only when the user lacks collateral assets. The result is an insolvent position.

We conclude that it is preferable if liquidations happen before the thresh-
old T . This threshold is itself before insolvency (B

S
= 1).
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3 General description of Morpho
In this section, we describe the main functionalities of the Morpho protocol.
We start by detailing the internals of Morpho: first, the storage variables of
the contract, followed by its internal functions. This allows us to describe
then the external functions in more detail. Those functions are the ones with
which the users interact. We conclude this section by proving the integrity
of Morpho on the underlying pool.

Given one protocol for loanable funds ψ, the corresponding Morpho pro-
tocol is noted Mψ, and we refer to its contract address as Mψ. We denote
by ΘMψ

the subset of Θψ of tokens available on Morpho for the protocol ψ.
For the sake of this paper, the particular PLF on top of which Morpho is
built does not matter. For this reason, in the following, we set the protocol
to be a generic ψ, which allows us to omit it in the notation. To remain
concise, we use the subscript notation to denote a function taking a token as
an argument or omit it entirely when it can be inferred from context.

3.1 Storage
In order to follow debt and supply increase over time, user balances are
stored in scaled units, whose underlying value grows over time. Pool credit
lines evolve at pool rates, and Morpho reuses the index mechanism of the
underlying pool to track them. The protocol also has its own peer-to-peer
scaled unit and associated index.

Supplier balances: Suppliers have two balances in Morpho. The pool
supply balance sPool is in a unit that grows in underlying token value at rS
speed and represents the supply that is deposited on the pool. The matched
or peer-to-peer supply balance sP2P grows at rP2P speed, and represents the
matched peer-to-peer supply.

sPool : ΘMψ
→ A→ R+

sP2P : ΘMψ
→ A→ R+

The balances separation is the mechanism that makes Morpho positions not
fungible. The total supply balance of a user is the sum of the two balances
brought back to the underlying unit. Let us use the following notations for
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the total supply balance of the user u:

ωSθ (u) = sPoolθ (u) · λSθ + sP2P
θ (u) · λP2P

θ (1)

Borrower balances: The same mechanism is used for borrower balances.
The pool borrow balance bPool represents the on-pool debt and grows at rB
speed, while the matched or peer-to-peer borrow balance bP2P grows at rP2P

speed.

bPool : ΘMψ
→ A→ R+

bP2P : ΘMψ
→ A→ R+

The total borrow balance of a user is the sum of the two balances brought
back to the underlying unit. Let us use the following notations for the total
borrow balance of the user u:

ωBθ (u) = bPoolθ (u) · λBθ + bP2P
θ (u) · λP2P

θ (2)

Index: The peer-to-peer index λP2P is the exchange rate between stored
peer-to-peer balances in the peer-to-peer scaled unit and underlying tokens.
It constantly grows with time, at a speed that depends on pool indexes evo-
lution (see theorem 5.2.1), according to the interest rates model of Morpho.
The amount of underlying tokens corresponding to an amount in peer-to-peer
scaled unit is obtained by multiplying the scaled unit by the peer-to-peer in-
dex. They are updated by update λP2P .

λP2P : ΘMψ
→ R+

We denote by rP2P : ΘMψ
→ R+ the rate at which this index evolves. It is

helpful to explain what is the rate experienced by the users of Morpho, but it
is not part of the storage. Indeed, Morpho does not use the rates of the pool
to compute the indexes. Instead Morpho is only relying on the indexes, which
makes it less susceptible to rate manipulations, where an attacker triggers
functions on the underlying pool to use the difference of rates it induces.
Subsection 5 details the computations and estimation of Morpho’s rates.
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3.2 Utils functions
Matching functions: These functions match (or unmatch) borrowers or
suppliers, updating their balances and returning the amount that was suc-
cessfully matched (or unmatched). Those functions are described in more
detail in subsection 4. They are said internal because they are accessible by
Morpho itself only.

Update index: The function update λM updates both the pool indexes
and the peer-to-peer indexes of the given market.

update λM : ΘMψ
→ 1

In order to update the pool indexes, this function calls update lambda. See
section 5 for more details on the calculations related to this function.

Borrowing capacity: The function borrowing capacityM is a function
that computes and returns a given user’s borrowing capacity (in value). This
amount can be borrowed in addition to the current debt.

borrowing capacityM : A→ R

This function first updates all the indexes it needs to access by calling the
function update λM on the respective markets. It then computes its result
according to the following formula:

borrowing capacityM(a) =
∑

θ∈ΘMψ

(sP2P
θ (a) · λP2P

θ + sPoolθ (a) · λSθ ) · pθ · Fθ

−
∑

θ∈ΘMψ

(bP2P
θ (a) · λP2P

θ + bPoolθ (a) · λBθ ) · pθ

3.3 Main Entry Points
Morpho mirrors PLF’s five main functions: supply, withdraw, borrow, and
repay for users, and liquidate for liquidators. From a user perspective, the
experience is the same as on PLFs.

From a high-level logic perspective, supply and borrow do a peer-to-peer
matching phase before finding or putting the remaining liquidity on the pool.
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Withdraw and repay first try to remove some liquidity from the pool be-
fore matching some users on the pool and finally unmatching peer-to-peer
matched users. Liquidate is a combination of repay and withdraw. The
order of operations has been chosen to maximize the matched peer-to-peer
liquidity, given the computation constraints.

3.3.1 Supply

The supplyM function is used to deposit funds to the Morpho protocol, which
starts accumulating interest at a potentially improved rate compared to the
underlying lending pool.

supplyM : Θψ × A× R+ → 1

High-level description

1. Peer-to-peer supply:

(a) Promote borrowers: Morpho matches the incoming liquidity
with some pool debt. The matching engine, described in more
detail in section 4, tries to match as much debt as possible from
pool borrowers. The liquidity is used to repay their debt on the
pool.

2. Pool supply:

(a) No matching process: The remaining liquidity of the supplier
is deposited on the underlying pool with a call to supply. There
is no matching process here since the position is not peer-to-peer.

Formal description

supplyMθ (user, amount):
update_λMθ ()
transferθ(user, Mψ, amount)

// Peer-to-peer supply

//// Promote borrowers
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matched = matchBorrowersθ(amount)
sP2P
θ (user) += matched / λP2P

θ

amount -= matched
repayθ(Mψ, matched)

// Pool supply

sPoolθ (user) += amount / λSθ
supplyθ(Mψ, amount)

3.3.2 Borrow

The borrowM function is used to borrow funds from the Morpho protocol,
potentially paying less interest compared to the underlying lending pool.

borrowM : Θψ × A× R+ → 1

High-level description

1. Peer-to-peer borrow:

(a) Promote suppliers: Morpho matches the incoming demand
with supply on the pool. The matching engine tries to match
as much supply as possible from pool suppliers. The liquidity is
taken from the pool suppliers with a withdraw on the underlying
pool.

2. Pool borrow:

(a) No matching process: The remaining demand is met on the
underlying pool with a call to borrow.

One may ask how Morpho ensures that its position is fairly collateralized,
considering that the borrowers’ supply could already be matched peer-to-peer
in Morpho: see theorem 3.4.1.

Formal description
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borrowMθ (user, amount):
update_λMθ ()
if amount * pθ > borrowing_capacityM(a):

return
initialAmount = amount

// Peer-to-peer borrow

//// Promote suppliers
matched = matchSuppliersθ(amount)
bP2P
θ (user) += matched / λP2P

θ

amount -= matched
withdrawθ(Mψ, matched)

// Pool borrow

bPoolθ (user) += amount / λBθ
borrowθ(Mψ, amount)

transferθ(Mψ, user, initialAmount)

3.3.3 Withdraw

The withdrawM function is used to withdraw previously supplied assets to
the Morpho protocol.

withdrawM : Θψ × A× R+ → 1

High-level description

1. Pool withdraw:

(a) No matching process: If some of the user’s liquidity is supplied
on the pool, Morpho withdraws the corresponding part of its posi-
tion on the underlying pool. It favors this option to maximize the
user’s matched peer-to-peer liquidity, thus, their capital efficiency.
A withdraw on the underlying pool is performed.

2. Peer-to-peer withdraw:
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(a) Transfer withdraw:
i. Promote suppliers: If the user is matched peer-to-peer,

Morpho replaces him with other pool suppliers. It favors this
option before the third one to maximize the total peer-to-peer
liquidity. The matching engine tries to match as much liquid-
ity as possible from pool suppliers. The liquidity is retrieved
by a call to withdraw on the underlying pool.

(b) Breaking withdraw:
i. Demote borrowers: Morpho breaks the peer-to-peer credit

lines of the withdrawing user with the matched borrowers and
reconnects them to the pool. The matching engine unmatches
all the remaining debt from peer-to-peer borrowers. A borrow
on the pool is performed to reconnect the borrowers to the
pool. The borrowed assets are transferred to the withdrawer.

Once again, the non-liquidation theorem 3.4.1 ensures that Morpho’s po-
sition is fairly collateralized.

Formal description

withdrawMθ (user, amount):
update_λMθ ()
if amount * Fθ * pθ > borrowing_capacityM(user):

return
initialAmount = amount

// Pool withdraw

withdrawnFromPool = min(amount, sPoolθ (user) * λSθ )
sPoolθ (user) -= withdrawnFromPool / λSθ
amount -= withdrawnFromPool
withdrawθ(Mψ, withdrawnFromPool)

// Peer-to-peer withdraw

//// Transfer withdraw
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// Promote suppliers
matched = matchSuppliersθ(amount)
sP2P
θ (user) -= matched / λP2P

θ

amount -= matched
withdrawθ(Mψ, matched)

//// Breaking withdraw

// Demote borrowers
unmatched = unmatchBorrowersθ(amount)
sP2P
θ (user) -= unmatched / λSθ

borrowθ(Mψ, unmatched)

transferθ(Mψ, user, initialAmount)

3.3.4 Repay

The repayM function is used to repay the accumulated debt to the Morpho
protocol.

repayM : Θψ × A× R+ → 1

High-level description

1. Pool repay:

(a) No matching process: If some of the user’s debt is borrowed
from the pool, Morpho repays liquidity to the underlying pool. It
favors this option to maximize the user’s matched liquidity and
capital efficiency. A repay is performed on the underlying pool.

2. Peer-to-peer repay:

(a) Transfer repay:
i. Promote borrowers: If the user is matched peer-to-peer,

Morpho replaces the peer-to-peer credit lines with other pool
borrowers. It favors this option before the third one to max-
imize the total peer-to-peer liquidity. The matching engine
tries to match as much debt as possible from pool borrowers.
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A repay on the pool is performed to cut those borrowers’ debt
on the pool.

(b) Breaking repay:
i. Demote suppliers: Morpho breaks the peer-to-peer credit

lines of the repaying user with the remaining matched suppli-
ers and deposits the unmatched liquidity on the underlying
pool. The matching engine unmatches all the remaining liq-
uidity from peer-to-peer suppliers. Morpho supply on the
underlying pool to reconnect the suppliers to the pool.

Formal description

repayMθ (user, amount):
update_λMθ ()
if amount > bP2P

θ (user) * λP2P + bPool(user) * λB:
return

transferθ(user, Mψ, amount)

// Pool repay

repaidOnPool = min(amount, bPoolθ (user) * λBθ )
bPoolθ (user) -= repaidOnPool / λBθ
amount -= repaidOnPool
repayθ(Mψ, repaidOnPool)

// Peer-to-peer repay

//// Transfer repay

// Promote borrowers
matched = matchBorrowersθ(amount)
bP2P
θ (user) -= matched / λP2P

θ

amount -= matched
repayθ(Mψ, matched)

//// Breaking repay
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// Demote suppliers
unmatched = unmatchSuppliersθ(amount)
bP2P
θ (user) -= unmatched / λP2P

θ

supplyθ(Mψ, unmatched)

3.3.5 Liquidate

The liquidation on Morpho works the same way as liquidation on the un-
derlying pool. When a position of a user is not sufficiently collateralized,
a liquidator can repay part of the debt of the user and seize a part of the
collateral of the user.

liquidateM : Θψ ×Θψ × A× A× R+ → 1

Morpho uses the same values for the collateral factors F , closeFactor, and
liquidationIncentive as the ones used by the underlying pool and the
same oracle to retrieve the prices of the borrowed and collateralized assets.
The main difference with the corresponding function on the pool is the cal-
culation of the underlying amount of supplied and borrowed assets. For each
user, both pool and peer-to-peer balances should be accounted. For example,
the amount of borrowed assets can be computed by:
borrows = bPoolθb

(user) * λBθb + bP2P
θb

(user) * λP2P
θb

3.4 Non-liquidation theorem
Let us first represent the positions on Morpho with a chart.
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The bar on the left represents all the assets that are supplied through Morpho
(in an arbitrary common unit), and the bar on the right represents all the
assets borrowed through Morpho. In both cases, the bottom part corresponds
to the liquidity on the underlying pool because it did not find a peer-to-peer
match. Notice that the matched part of the supply equals the matched part
of the borrow.

The non-liquidation theorem states that the position of Morpho on the
underlying pool is not liquidatable. The intuition behind it comes from
considering safe positions as positions where the borrowed assets represent a
fraction, in value, of the supplied assets. Then, because Morpho enforces that
its users have safe positions (considering both their assets on the pool and
their matched assets) thanks to the liquidation mechanism, the combination
of pool borrow and peer-to-peer borrow must also represent a fraction of the
combination of the pool supply and the peer-to-peer supply. In the previous
chart, this is visualized by estimating the whole borrow bar against the whole
supply bar. Removing the matched part, both in borrow and supply, only
makes this fraction smaller. This amounts to comparing the pool borrow
against the pool supply, which gives us the position of Morpho itself on the
underlying pool. The chart visualizes this by estimating the bottom of the
borrow bar against the bottom of the supply bar.

First, we present and prove the pool position’s integrity lemma and the
peer-to-peer integrity lemma, which are helpful to prove the non-liquidation
theorem. Recall that bθ et sθ are the borrow and supply balances on the
underlying pool.
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Lemma 3.4.1 (Pool position’s integrity). Morpho’s position on the pool is
always the sum of the positions on the pool of all its users.

∀θ ∈ ΘMψ
,

{
sθ(Mψ) = ∑

u s
Pool
θ (u)

bθ(Mψ) = ∑
u b

Pool
θ (u)

Proof. We prove this lemma by induction.

Base case At deployment, there is no user on Morpho:∑
u

sPool(u) =
∑
u

bPool(u) = 0

And Morpho does not have any position on the pool:

s(Mψ) = b(Mψ) = 0

So the equalities are verified at the initial state.

Induction step Let σi ∈ Σ be a state where the equalities are verified.
Consider a transition to σr ∈ Σ. We only treat the case where the transition
is associated to a function call to supply. Let d = (θ, u, x) ∈ Dsupply be the
input for this transition. By now, we only consider the market θ, as others
are untouched so that θ can be omitted as a subscript.

To remain concise, we write λS for σr(λS) and λB for σr(λB). Consider
first the peer-to-peer supply step. Let xµB be the total amount matched
in underlying by matchBorrowers (matched in the pseudo-code). The total
pool borrow amount is reduced by xµB/λB, and the Morpho borrow position
on the pool is reduced by xµB/λB.

∑
u

σr(bPool(u)) =
∑
u

σi(bPool(u))− xµB

λB

σr(b(Mψ)) = σi(b(Mψ))− xµB

λB

Consider also the pool supply step. The amount xPool/λS is added to the
supplier’s pool balance with xPool = (x−matched). The pool supply balance
increases by xPool/λS:

∑
u

σr(sPool(u)) =
∑
u

σi(sPool(u)) + xPool

λS
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σr(s(Mψ)) = σi(s(Mψ)) + xPool

λS

Yet, the equalities were verified at σi, so:

σr(s(Mψ)) =
∑
u

σr(sPool(u))

σr(b(Mψ)) =
∑
u

σr(bPool(u))

The proof is similar for the other possible transitions. �

Lemma 3.4.2 (Peer-to-peer integrity). The sum of the suppliers’ peer-to-
peer balances is always equal to the sum of the borrowers’ peer-to-peer bal-
ances.

∀θ ∈ ΘMψ
,
∑
u

sP2P
θ (u) · λP2P

θ =
∑
u

bP2P
θ (u) · λP2P

θ

Proof. We prove this lemma by induction and reuse the same notations as
for lemma 3.4.1.

Base case The equality is clearly verified at deployment.

Induction step Let us prove that the invariant is preserved by a transition
resulting from calling the supply function. Let d = (θ, u, x) ∈ Dsupply be the
input for this function call.

First, we notice that the equality is still verified after the index update:∑
u

sP2P
θ (u) · σr(λP2P

θ ) =
∑
u

bP2P
θ (u) · σr(λP2P

θ )

And, to remain concise, we write λP2P
θ for σr(λP2P

θ ).
Consider first the peer-to-peer supply step. Let xµB be the total

amount matched in underlying by matchBorrowersθ (matched in the pseudo-
code). The peer-to-peer supply balance of the supplier is increased by xµB/λP2P

θ ,
and the total of the peer-to-peer borrow balances is increased by xµB/λP2P

θ .

∑
u

σr(sP2P (u)) · λP2P
θ =

(∑
u

σi(sP2P (u)) + xµB

λP2P
θ

)
· λP2P

θ

∑
u

σr(bP2P (u)) · λP2P
θ =

(∑
u

σi(bP2P (u)) + xµB

λP2P
θ

)
· λP2P

θ
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Remark also that the pool supply step does not change any user peer-to-
peer balance. Yet, the equality was verified at σi, so:∑

u

σr(sP2P (u)) · λP2P
θ =

∑
u

σr(bP2P (u)) · λP2P
θ

The proof is similar for the other possible transitions. �

We now turn to the non-liquidation theorem itself and its proof. This the-
orem assumes a working liquidation system on Morpho: positions on Morpho
are liquidated as needed. In practice, for this assumption to hold, it requires
a reliable, and responsive off-chain monitoring of the positions on Morpho.

Theorem 3.4.1 (Non-liquidation). If Morpho is equipped with a working
liquidation system, then Morpho’s position on the pool is not liquidatable.

Proof. From the peer-to-peer integrity lemma 3.4.2, we know that for each
token θ, the following inequality stands:∑

u

bP2P
θ (u) · λP2P

θ =
∑
u

sP2P
θ (u) · λP2P

θ

We also get the following equalities from the pool position’s integrity lemma 3.4.1:

sθ(Mψ) =
∑
u

sPoolθ (u) (3)

bθ(Mψ) =
∑
u

bPoolθ (u) (4)

Recalling that Fθ represents the collateral factor, the liquidation mechanism
on Morpho ensures that, for each user u, we have:∑

θ

pθ · ωBθ (u) ≤
∑
θ

pθ · Fθ · ωSθ (u)

so ∑
u

∑
θ

pθ · ωBθ (u) ≤
∑
u

∑
θ

pθ · Fθ · ωSθ (u)

and ∑
θ

pθ ·
∑
u

ωBθ (u) ≤
∑
θ

pθ · Fθ ·
∑
u

ωSθ (u)
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Using the equalities 1, 2 and then the equalities 3 and 4, we get:∑
θ

pθ·(bθ(Mψ) · λBθ +
∑
u

bP2P
θ (u) · λP2P

θ ) ≤∑
θ

pθ · Fθ · (sθ(Mψ) · λSθ +
∑
u

sP2P
θ (u) · λP2P

θ )
(5)

For each θ, Fθ less than or equal to 1, so we have:∑
u

bP2P
θ (u) · λP2P

θ − Fθ ·
∑
u

sP2P
θ (u) · λP2P

θ = (1− Fθ) ·
∑
u

bP2P
θ (u) · λP2P

θ

≥ 0

This gives us the following:

∑
θ

pθ ·
[∑
u

bP2P
θ (u) · λP2P

θ − Fθ ·
∑
u

sP2P
θ (u) · λP2P

θ

]
≥ 0 (6)

With 5 and 6, we can conclude that:∑
θ

pθ · bθ(Mψ) · λBθ ≤
∑
θ

pθ · Fθ · sθ(Mψ) · λSθ

In other words, Morpho’s position on the pool is not liquidatable. �
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4 Matching engine
The role of the matching engine is to create and break the peer-to-peer credit
lines of users. In this section, we will first explain how the Morpho protocol
makes use of the matching engine, and we will then describe its high-level
operation. The implementation is voluntarily left abstract, as different ones
could fit into the setting.

4.1 Overview
Let us give an example before describing the inner workings of the matching
engine.

Example 4.1.1. Let us say that the first 10 users of Morpho are DAI sup-
pliers. They all supply 1000 DAI tokens. Alice deposits some WETH as
collateral and borrows 5000 DAI. At that time, the matching engine will look
for suppliers to match and move 5 of them peer-to-peer. Alice and 5 of the
suppliers ended up matched peer-to-peer, enjoying Morpho’s rates.

Note that it is possible for a user to be only partially matched peer-to-
peer. Such a user has a fraction of its liquidity matched peer-to-peer, while
the rest is on the pool.

Notice, moreover, that peer-to-peer credit lines are not really associating
borrowers with suppliers. Being matched peer-to-peer is a state in which the
user benefits from better rates than on the pool. And the matching engine’s
role is to move users in and out of this state.

4.2 Storage
User addresses are kept in four structures. Suppliers are in suppliersInP2P
if they have matched supply and in suppliersOnPool if they have some
supply on the pool. The same applies to borrowers, with borrowersInP2P
and borrowersOnPool.

In this yellow paper, we do not describe the data structures used for the
storage of the matching engine. We assume that those structures are always
up to date and that we have access to functions to retrieve the suppliers and
borrowers that are in those structures.
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4.3 Functions

4.3.1 Getter functions

Get a peer-to-peer supplier: This function returns a supplier that has
matched peer-to-peer liquidity in the market θ.

getSupplierP2P : ΘMψ
→ A

Get a pool supplier: This function returns a supplier that has liquidity
on the pool in the market θ.

getSupplierPool : ΘMψ
→ A

Get a peer-to-peer borrower: This function returns a borrower that has
matched peer-to-peer debt in the market θ.

getBorrowerP2P : ΘMψ
→ A

Get a pool borrower: This function returns a borrower that has debt on
the pool in the market θ.

getBorrowerPool : ΘMψ
→ A

4.3.2 Matching functions

Let us describe the main functions of the matching engine: matchSuppliers,
unmatchSuppliers, matchBorrowers, unmatchBorrowers. Those functions
match (resp. unmatch) peer-to-peer borrowers or peer-to-peer suppliers by
looking for them in the corresponding structure of the matching engine. They
return the amount that was successfully matched (resp. unmatched), and we
assume that they update the structures of the matching engine accordingly.

Match suppliers: The function matchSuppliers matches pool suppliers
until the amount amount has been found or until there are no more pool
suppliers.

matchSuppliers : ΘMψ
× R+ → R+

It updates some suppliers’ positions in the structures of the matching engine
(suppliersInP2P and suppliersOnPool) and their balances (sP2P , sPool)
accordingly. Then it returns the matched amount.
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As an example, the following pseudo-code loops through pool suppliers
to find the asked liquidity.
matchSuppliersθ(amount):

matched = 0
while amount > 0 and suppliersOnPool != ∅:

supplier = getSupplierPoolθ ()
toMatch = min(amount, sPoolθ (supplier) * λSθ )
sPoolθ (supplier) -= toMatch / λSθ
sP2P
θ (supplier) += toMatch / λP2P

θ

amount -= toMatch
matched += toMatch

return matched

Remember that the data-structure suppliersOnPool is assumed to always
be up to date so we can expect the loop to terminate if there are no more
pool suppliers.

Unmatch suppliers: The function unmatchSuppliers unmatches peer-
to-peer suppliers, until the amount amount has been found or until there are
no more peer-to-peer suppliers.

unmatchSuppliers : ΘMψ
× R+ → R+

It updates some suppliers’ positions in the structures of the matching engine
(suppliersInP2P and suppliersOnPool) and their balances (sP2P , sPool)
accordingly. Then it returns the unmatched amount.

Match borrowers: The function matchBorrowers matches pool borrow-
ers, until the amount amount has been found or until there are no more pool
borrowers.

matchBorrowers : ΘMψ
× R+ → R+

It updates some borrowers’ positions in the structures of the matching engine
(borrowersInP2P and borrowersOnPool) and their balances (bP2P , bPool)
accordingly. Then it returns the matched amount.

Unmatch borrowers: The function unmatchBorrowers unmatches peer-
to-peer borrowers, until the amount amount has been found or until there
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are no more peer-to-peer borrowers.

unmatchBorrowers : ΘMψ
× R+ → R+

It updates some borrowers’ positions in the structures of the matching engine
(borrowersInP2P and borrowersOnPool) and their balances (bP2P , bPool)
accordingly. Then it returns the unmatched amount.
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5 Interest rates mechanism
In this section, we will go through all the Morpho mechanisms related to
interest rates. To this end, we first define the rates that we will consider
and then explain the different methods used to update the indexes, includ-
ing Morpho’s approach. We conclude the section with a proof of the rate
improvement that Morpho is achieving.

5.1 Interest rates

5.1.1 Pool rates

Morpho’s users that are not matched peer-to-peer are connected to the pool
(either via a deposit or a loan) and so experience pool rates. Their credit
lines evolve at pool rates, rS and rB.

5.1.2 Peer-to-peer theoretical rate

While users on the pool necessarily earn and pay the exact pool rates, Morpho
can freely choose the interest rates of its peer-to-peer matched users. In order
for the protocol to be a Pareto improvement of liquidity pools, the chosen
rate should always be in the rate spread of the pool.

For this first version of the protocol, it is a weighted arithmetic mean of
the supply and borrow rates of the pool, weighted by α ∈ [0, 1], the peer-to-
peer cursor. The corresponding peer-to-peer rate is:

rα = rS + α(rB − rS)
= (1− α)rS + αrB

For example, the so-called “mid-rate” (α = 1
2) would be:

rα = rP2P = rS + rB

2

5.1.3 Peer-to-peer reserve rate

In order to be sustainable in the long run, the protocol can charge a fee for
users and give it back to the Morpho DAO. In this section we focus on the
impact the fee has on Morpho’s rates, an explanation of the fee’s accounting
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is given in section 6.2.4. The fee is only charged for users who really benefit
from the protocol improvements, so peer-to-peer matched users15. Thus, a
difference between matched suppliers’ and borrowers’ rates is introduced.
Call ρ the reserve factor, a quantity that represents the proportion of the
difference with the pool rate. The resulting rates are:

rρ
S = rα − ρ(rα − rS)

= (1− ρ)rα + ρrS

= (1− ρ)((1− α)rS + αrB) + ρrS

= (1− α + ρα)rS + (α− ρα)rB

rρ
B = rα + ρ(rB − rα)

= (1− ρ)rα + ρrB

= (1− ρ)((1− α)rS + αrB) + ρrB

= (1− ρ− α + ρα)rS + (ρ+ α− ρα)rB

The difference rρB−rρS = ρ(rB−rs) is the percentage ρ of the spread rB−rS
of the pool rates.

5.2 Indexes

5.2.1 Generalities

Let (ri)i∈N be a sequence of rates and (λi)i∈N be the corresponding sequence
of indexes. Let (ti)i∈N be the increasing sequence of times when the index
is updated. We assume that t0 = 0. Let tcurrent be an update time with
current > 0, we write tlast = tcurrent−1 and ∆t = tcurrent − tlast. We de-
tail the indexes evolution in the following three different settings, with the
sequence (λi) being either (λlini ), (λcompi ) or (λrecompi ).

With linear interests. The formula of index evolution in one step is given
by:

∀t ∈ N, λlint+1 = λlint + λlin0 · rt
15Thus, the fee can be seen as a cut in the improvement that Morpho enables
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By recurrence, we can prove that:

∀t ∈ N, λlint = λlin0 (1 +
∑
k<t

rk)

Assuming that (ri) is constant on Jtlast, tcurrentJ, the following formula gives
a way to update the indexes in the case of linear interests:

λlintcurrent = λlintlast + ∆t · λlin0 · rtlast

With compounded interests.16 The formula of index evolution in one
step is given by:

∀t ∈ N, λcompt+1 = λcompt + λcompt · rt
By recurrence, we can prove that:

∀t ∈ N,∀t′ ∈ N, t′ < t, λcompt = λcompt′

∏
t′≤i<t

(1 + ri)

Assuming that (ri) is constant on Jtlast, tcurrentJ17, the following formula gives
a way to update the index in the case of compounded interests:

λcomptcurrent = λcomptlast (1 + rtlast)∆t

With re-compounded linear interests.18: The formula of index evolu-
tion in one step is given by:

∀t ∈ N, λrecompt+1 = λrecompt + λrecompt′ · rt

where t′ is the last update time before t. By recurrence, we can prove that,
for s, e ∈ N such that s ≤ e:

λrecompte = λrecompts

∏
s≤i<e

1 +
∑

ti≤j<ti+1

rj


And, in particular:

λrecomptcurrent = λrecomptlast

1 +
∑

tlast≤j<tcurrent
rj


16Aave uses an approximation of this method for borrow interests.
17This is the case in reality because indexes are updated at each pool interaction, and

rates only change at pool interactions.
18This is the method used by Compound and for supply interest by Aave.
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Assuming that (rj) is constant on Jtlast, tcurrentJ, the following formula gives
a way to update the index in the case of re-compounded interests:

λrecomptcurrent = λrecomptlast (1 + ∆t · rtlast)

5.2.2 Indexes calculations on Morpho

Let us define the weights βS and βB, with βB+βS = 1 such that the Morpho
rate r is expected to be βSrS+βBrB. These weights define where the Morpho
rate lies in the spread. For example, if βS is close to 1, r should be close
to the pool supply rate rS. λ denotes the index associated to r, allowing us
to generalize the results of this subsection. In particular, we will be able to
apply the theorem 5.2.1 to the rates rα, rρS , and rρB defined in subsection 5.1
and to the rates rγS and rγ

B defined in subsection 6.3.
As previously stated, Morpho does not use the pool rates to update its

indexes but instead uses the pool indexes’ growth. The following theorem
gives the formula that is used to update Morpho’s indexes in that way. Notice
that the pool rates do not appear in the formula given by the theorem.

We assume that the underlying pool uses compounded interests to update
its indexes.

Theorem 5.2.1. Let βS ∈ R+, βB ∈ R+ with βS + βB = 1 and let (λi)i∈N

be a sequence such that:

∀t ∈ N,∀t′ ∈ N, t > t′ ⇒ λt = λt′
∏

t′≤i<t
(1 + βSrSi + βBrBi )

We have, with Rt′,t the maximum of the rates rBi for i ∈ Jt′, tJ:

∀t ∈ N,∀t′ ∈ N, t > t′ ⇒ λt = λt′

(
βS
λSt
λSt′

+ βB
λBt
λBt′

+O(R2
t′,t)

)

Proof. Let t ∈ N, t′ ∈ N, t′ < t. The precision of the approximation given by
this theorem relies on the fact that the rates are small numbers, and thus
the maximum of those rates Rt′,t is small too.
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λt = λt′
∏

t′≤i<t
(1 + βSrSi + βBrBi )

= λt′

1 +
∑
t′≤i<t

(βSrSi + βBrBi ) +O(R2
t′,t)


= λt′

1 + βS
∑
t′≤i<t

rSi + βB
∑
t′≤i<t

rBi +O(R2
t′,t)


On the other hand, we have:

λSt
λSt′

= λ0
∏

0≤i<t(1 + rSi )
λ0
∏

0≤i<t′(1 + rSi )
=

∏
t′≤i<t

(1 + rSi )

= 1 +
∑
t′≤i<t

rSi +O(R2
t′,t)

and
λBt
λBt′

= λ0
∏

0≤i<t(1 + rBi )
λ0
∏

0≤i<t′(1 + rBi )
=

∏
t′≤i<t

(1 + rBi )

= 1 +
∑
t′≤i<t

rBi +O(R2
t′,t)

so

λt = λt′

(
1 + βS(λ

S
t

λSt′
− 1 +O(R2

t′,t)) + βB(λ
B
t

λBt′
− 1 +O(R2

t′,t)) +O(R2
t′,t)

)

= λt′

(
1 + βS

λSt
λSt′

+ βB
λBt
λBt′
− βS − βB +O(R2

t′,t)
)

= λt′

(
βS
λSt
λSt′

+ βB
λBt
λBt′

+O(R2
t′,t)

)
�

Notice that if the underlying pool uses linear interests, then the approxi-
mation given by the theorem is an exact calculation. Let us now explain how
the indexes are updated in Morpho, starting with the most straighforward
case where there is no reserve factor.
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Without reserve factor: Let (ui)i∈N be the sequences of times when the
index is updated on Morpho. Let (λSi )i∈N and (λBi )i∈N be the supply and
borrow indexes on the pool. Let (λαi )i∈N be Morpho’s indexes. This notation
is introduced to take into account the peer-to-peer cursor α.

Let t ∈ N, t′ ∈ N with t′ < t. We have:

λαt = λαt′
∏

t′≤i<t
(1 + rαi )

= λαt′
∏

t′≤i<t
(1 + (1− α)rSi + αrBi )

With theorem 5.2.1 (βS = (1− α), βB = α):

λαt = λαt′

(
(1− α)λ

S
t

λSt′
+ α

λBt
λBt′

+O(R2
t′,t)

)

≈ λα
(

(1− α)λ
S
t

λSt′
+ α

λBt
λBt′

)

This last formula can be used to update the indexes.

With reserve factor: Now we take into account the reserve factor. As we
have seen in paragraph 5.1.3, we want the rates experienced by users to be:

rρ
S = (1− α + ρα)rS + (α− ρα)rB

rρ
B = (1− ρ− α + ρα)rS + (ρ+ α− ρα)rB

We denote the corresponding index rates by (λρ
S

i )i∈N and (λρ
B

i )i∈N. This
notation is introduced to take into account the reserve factor (in addition to
the peer-to-peer cursor).

Let t ∈ N, t′ ∈ N with t′ < t. We have:

λρ
S

t = λρ
S

t′

∏
t′≤i<t

(1 + rρ
S

i )

= λρ
S

t′

∏
t′≤i<t

(1 + (1− α + ρα)rSi + (α− ρα)rBi )
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With theorem 5.2.1 (βS = (1− α + ρα), βB = (α− ρα)):

λρ
S

t = λρ
S

t′

(
(1− α + ρα)λ

S
t

λSt′
+ (α− ρα)λ

B
t

λBt′
+O(R2

t′,t)
)

(7)

Similarly, for the borrow indexes, we have:

λρ
B

t = λρ
B

t′

(
(1− ρ− α + ρα)λ

S
t

λSt′
+ (ρ+ α− ρα)λ

B
t

λBt′
+O(R2

t′,t)
)

(8)

When considering the reserve factor, we can use those two results to
update the indexes. Those formulas are efficient computations that we can
use in the code.

5.3 Peer-to-peer inequality
Notice that the peer-to-peer integrity lemma no longer holds because of the
reserve factor. However, we can still prove that the sum of the suppliers’
peer-to-peer balances is always equal to the sum of the borrowers’ peer-to-
peer balances plus the unpaid reserve in underlying (which we will note P ).

Lemma 5.3.1.

∀θ ∈ Θ,
∑
u

sP2P (u) · λρ
S

θ + Pθ =
∑
u

bP2P (u) · λρ
B

θ

We have as a direct corrolary:

Lemma 5.3.2. (Peer-to-peer inequality)

∀θ ∈ Θ,
∑
u

sP2P (u) · λρ
S

θ ≤
∑
u

bP2P (u) · λρ
B

θ

This is enough to prove the non-liquidation theorem (3.4.1).

5.4 Rates calculations and Pareto improvement
We show in this subsection that Morpho rates are improved compared to the
ones on the underlying pool. To that end, we assume that the initial peer-to-
peer index rates are between the supply index rate λS and the borrow index
rate λB and show that index rates stay in this range. An exact calculation
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of the rates is provided, leading to an estimate of those rates that is easier
to understand and compute.

Let (λi) be a sequence only changing at (un) (those represent the update
times) such that, for t = un, we have:

λt = λun−1

(
βS

λSt
λSun−1

+ βB
λBt
λBun−1

)

with βS +βB = 1. This condition holds for (λαi ), (λρ
S

i ), (λρ
B

i ), and even (λSi )
and (λBi ). Remember that the weights βS and βB can be computed from the
peer-to-peer cursor α and the reserve factor ρ of Morpho.

5.4.1 Index rates improvement

Theorem 5.4.1. The index λi stays in the interval [λSi , λBi ].

Proof. We prove this theorem by induction. We assume that it holds at 0,
so we only need to prove that it holds at t = un, knowing that:

λSun−1 ≤ λun−1 ≤ λBun−1

Since the supply rate is less than the borrow rate, we have

λSt
λSun−1

≤ λBt
λBun−1

The average of these rates should be in the middle, so:

λSt
λSun−1

≤ βS
λSt
λSun−1

+ βB
λBt
λBun−1

≤ λBt
λBun−1

By using the induction hypothesis, we get

λSun−1

λSt
λSun−1

≤ λun−1(βS λSt
λSun−1

+ βB
λBt
λBun−1

) ≤ λBun−1

λBt
λBun−1

which is what we wanted to prove:

λSt ≤ λt ≤ λBt

�
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5.4.2 Rates improvement

Let un−1 be the last time the index rates have been updated. With ∆t =
t− un−1, let r̄St be the rate such that:

(1 + r̄St )∆t = λSt
λSun−1

The rate r̄St is formally defined by:

r̄St =
(

λSt
λSun−1

)1/∆t

− 1

The rate r̄St is an “average”, meaning that it is the rate at which the index
rate λS would grow if its rate were constant between un−1 and t. In other
words, we can consider that a supplier has benefited from this average rate
for the whole period ∆t. We define r̄St and r̄t in the same way:

(1 + r̄Bt )∆t = λBt
λBun−1

(1 + r̄t)∆t = βS
λSt
λSun−1

+ βB
λBt
λBun−1

So, the rate experienced by matched users of Morpho between the update
times un−1 and t = un is given by:

r̄t = (βS λSt
λSun−1

+ βB
λBt
λBun−1

)1/∆t − 1

Theorem 5.4.2. The experienced rate r̄t is in the spread [r̄St , r̄Bt ].
Proof. Define f : R+ → R such that for x ≥ 0, f(x) = (1 + x)1/∆t − 1. We
know that

λSt
λSun−1

≤ βS
λSt
λSun−1

+ βB
λBt
λBun−1

≤ λBt
λBun−1

and since f is growing, we have:

f( λSt
λSun−1

− 1) ≤ f(βS λSt
λSun−1

+ βB
λBt
λBun−1

− 1) ≤ f( λBt
λBun−1

− 1)

so
r̄St ≤ r̄t ≤ r̄Bt

�
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This shows that Morpho provides better rates than the underlying pool.

5.4.3 Morpho rate calculation and estimate

We want to know where the average rate lies between the supply and the
borrow rates. This amounts to calculating βSr and βBr such that βSr +βBr = 1
and such that r̄t = βSr r̄

S
t + βBr r̄

B
t . Thus, the exact calculation is given by:

βSr = r̄t − r̄Bt
r̄St − r̄Bt

and by βBr = 1− βSr . This way, any user with access to the underlying pool
rates can calculate where the Morpho rate lies between the supply and the
borrow rates. If the quantities λSt

λSun−1
and λBt

λBun−1
are small, we can use the

following estimation of the function f for small values of x

f(x) ≈ f(0) + f ′(0) · x
≈ ∆t · x

and estimate

βSr = r̄t − r̄Bt
r̄St − r̄Bt

≈
∆t · (βS λSt

λSun−1
+ βB

λBt
λBun−1

)−∆t · λBt
λBun−1

∆t · λSt
λSun−1

−∆t · λBt
λBun−1

≈ βS

We also have βBr ≈ βB. Notice that this approximation is independent of
time. This gives a simple rule of thumb to know where the Morpho rate lies
between the borrow rate and the supply rate.

We have seen that the peer-to-peer rate can be computed precisely or
estimated given the appropriate weights βB (and βS). Notably, for the peer-
to-peer supply rate taking into account the reserve factor, we have βB =
α− ρα. This is useful to compute the experienced rate of a user with both a
position on the pool and in peer-to-peer. The rate experienced by the user is
thus an average of the computed peer-to-peer rate and the pool rate (either
rB or rS), weighted by their pool and peer-to-peer balances.
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6 Peer-to-peer delta mechanism
Matching and unmatching users peer-to-peer is not a constant time opera-
tion, and large transactions may not find sufficient liquidity given the alloted
resources. The delta mechanism is designed to solve this issue.

Definining a concrete limit on the computation can be done in different
settings: it could be done to save CPU time, to limit the total power used,
or to prove that a particular implementation terminates by first adding a
”fuel parameter”. Using this limit, we can then be decide at any point if the
matching engine should stop. In this paper we apply the delta mechanism
to limit the gas usage in the EVM [B+14], but the same mechanism could be
used in the contexts mentioned above.

This section first gives a high-level description of the problem and of the
delta mechanism as a solution, which allows us to derive the impact it has
on the rates. We then turn to a more detailed description of how this is
implemented, and we conclude by updating the protocol formalism to take
into account the delta mechanism.

6.1 Description
Finding a match can be an intensive computation, and we explain here how
we can stop the matching engine early to mitigate its cost. It amounts to
finding the missing liquidity when the matching engine did not return a high
enough matched amount.

When supplying or borrowing, if not enough liquidity could be found,
we already have the pool fallback: Morpho fills the rest of the order with a
supply or borrow on the pool, and the user balances are updated accordingly.

For withdrawing and repaying, since these functions end with a match-
ing part that is expected to find the asked liquidity, we need to come up
with another fallback. Indeed, we would need to modify the balance of the
unmatched users and the data-structures states, but we cannot because of
the computation constraint. The idea is to continue the breaking step (see
breaking withdraw and breaking repay) by increasing the position of Morpho
on the pool accordingly. This means that the rate experienced by suppliers
should decrease in case of a breaking repay, and the rate experienced by bor-
rowers should increase in case of a breaking withdraw. The delta mechanism
is designed to account for this change.
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To summarize, the peer-to-peer delta mechanism works as follows: we op-
erate the pool fallback to fill the order, even if we cannot unmatch enough
peer-to-peer users. It introduces a difference19 between the peer-to-peer liq-
uidity evolving at Morpho’s rates and the sum of peer-to-peer balances of
users on this side of the market. In order to remedy this, the rates experi-
enced by all peer-to-peer users are adapted.

Concretely, consider the case where one user is withdrawing (resp. re-
paying), and its liquidity is matched peer-to-peer. Suppose also that there
is insufficient liquidity from suppliers (resp. borrowers) on the pool to re-
place him. So the peer-to-peer credit lines will be broken, and peer-to-peer
borrowers (resp. suppliers) will be reconnected to the pool. If the matching
engine cannot find enough liquidity in this step, then Morpho borrows (resp.
supplies) all the remaining asked liquidity on the pool. This means that
all peer-to-peer borrowers (resp. suppliers) now have a part of their borrow
(resp. supply) on the pool and now get a worse rate.

Let SP2P and SPool be the total supply of Morpho users peer-to-peer and
on the pool:

SP2P =
∑
a∈A

sP2P (a)

SPool =
∑
a∈A

sPool(a)

Similarly, let BP2P and BPool be the total borrows:

BP2P =
∑
a∈A

bP2P (a)

BPool =
∑
a∈A

bPool(a)

Recall that s(a) and b(a) represent the supply and borrow balances of
user a on the pool. Those quantities are defined independently of Morpho in
subsection 2.2. The peer-to-peer supply delta δS and the peer-to-peer borrow
delta δB are defined as follows:

SPool + δS = s(Mψ)
BPool + δB = b(Mψ)

19The name ”delta” refers to this difference.



6 PEER-TO-PEER DELTA MECHANISM 50

These notations are represented on the following chart, showing only the
case of the borrow delta for concision.

Example 6.1.1. Let us take a simple example. Suppose that the match-
ing engine can unmatch at most three users. The following three successive
situations give us an example of the delta mechanism in functioning.

Suppliers on pool in p2p
user 1 0 60

Morpho’s position on the pool: 0

Borrowers on pool in p2p
user 2 0 10
user 3 0 10
user 4 0 10
user 5 0 10
user 6 0 10
user 7 0 10

Morpho’s position on the pool: 0

Table 1: Initial situation
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Suppliers on pool in p2p
user 1 0 30

Morpho’s position on the pool: 0

Borrowers on pool in p2p
user 2 10 0
user 3 10 0
user 4 10 0
user 5 0 10
user 6 0 10
user 7 0 10

Morpho’s position on the pool: 30

Table 2: After classic breaking withdraw (user 1 withdraws 60)

Suppliers on pool in p2p
user 1 0 0

Morpho’s position on the pool: 0

Borrowers on pool in p2p
user 2 10 0
user 3 10 0
user 4 10 0
user 5 0 10
user 6 0 10
user 7 0 10

Morpho’s position on the pool: 60

Table 3: After the whole withdraw

After the whole transaction, the peer-to-peer borrow delta is equal to 30.
All the peer-to-peer amount is in effect on the pool.

There are three situations in which Morpho deals with the delta mecha-
nism.

Delta increase After a breaking withdraw or breaking repay, if not enough
peer-to-peer users could be unmatched, we increase the delta by the missing
liquidity.

Delta matching When new liquidity comes (in a supply or borrow), the
delta of the other side of the market is “matched”, reducing it.
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Delta reduction When some peer-to-peer liquidity exits, the correspond-
ing delta is reduced. For example, withdrawing peer-to-peer matched liquid-
ity will first decrease the supply delta.

6.2 Implementation
To ensure that transactions gas costs are bounded, we make sure that

the gas used for matching does not exceed a predefined limit. The prede-
fined limit, written maxGasForMatching, accounts for all the gas used by the
matching engine during one transaction. When a matching function does not
have enough gas left to execute, it can return early and return a matched
amount lower than the asked liquidity. Since other parts of the code also
have a bounded gas cost, we know that Morpho’s operations’ overall gas
costs are bounded. This way, Morpho can scale as more users enter the
different markets.

The matching engine is not mandatory for operations to succeed. Thus we
introduce the possibility for Morpho users to choose the maxGasForMatching
parameter, that is how much gas they are ready to pay for matching engine
in supplyM and borrowM functions.

This cannot be used in withdrawM , repayM , and liquidateM . Indeed,
for these functions, there is no economic incentive to match and unmatch
more users (in fact, there is an incentive not to do so because of the gas
cost). So, for these functions, the maximum gas to be used in matching is
fixed. It may be 0 for liquidateM to reduce liquidations gas cost.

The matching functions implementations need to be modified to consider
the gas constraints so that they stop executing when there is no gas left for
matching. More specifically, the matching functions described in section 4
now take an additional parameter and return an additional value: respec-
tively, the gas available for the matching engine before the call of the func-
tion and the gas left after its execution. Consider, for example, the function
matchSuppliers, updated to take into account the gas limits

matchSuppliers : ΘMp × R+ × N→ R+ × N

A call such as matchSuppliersθ(amount, gasAtStart) will match suppliers
and return a pair (matched, gasLeft), where matched is the liquidity that
has been matched, and gasLeft is the gas left after the call, a lower value
than gasAtStart. Notice that the gas parameter is simply an integer here, as
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in Ethereum. As before, matched is lower than amount, the asked liquidity.
The matched amount can also be lower than amount when there is not enough
gas to look for the asked liquidity.

We also need to track the deltas in new storage variables:

δS ∈ Θψ → R+

δB ∈ Θψ → R+

for respectively the peer-to-peer supply delta and the peer-to-peer borrow
delta. Their values are in pool scaled units because they evolve at pool rates.
Also, to calculate the share of the delta and update the indexes, we need to
track the total amounts matched peer-to-peer. To do so, we introduce two
new variables to Morpho’s contract storage:

SP2P ∈ Θψ → R+

for the total peer-to-peer supply amount and

BP2P ∈ Θψ → R+

for the total peer-to-peer borrow amount. Finally, we define the peer-to-peer
supply index that takes into account the delta mechanism (on top of the
index cursor and the reserve factor):

λγ
S

Similarly, we have the peer-to-peer borrow index taking into account the
delta mechanism:

λγ
B

Subsection 6.3 details how those peer-to-peer indexes are updated.

Let us rewrite Morpho’s main functions with the implementation of the
delta mechanism.

6.2.1 Supply

High-level description
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1. Peer-to-peer supply:

(a) Match peer-to-peer borrow delta: Morpho “matches” the
user with the peer-to-peer borrow delta and reduces it. This is
done first to keep the delta as low as possible. A repay on the
pool is performed to reduce the surplus of borrow on the pool
induced by the peer-to-peer borrow delta. Note that this allows
responsive users to skip the queue of users on the pool and be
instantly matched peer-to-peer.

(b) Peer-to-peer supply: Morpho matches the incoming liquidity
with some debt on the pool. The matching engine tries to match
as much debt as possible from pool borrowers. A repay on the
pool is performed to disconnect the matched borrowers from it.

2. Pool supply:

(a) No matching process: The remaining liquidity is deposited on
the underlying pool. There is no matching process here.

Formal description

supplyMθ (user, amount):
update_λMθ ()
transferθ(user, Mψ, amount)

// Peer-to-peer supply

//// Match peer-to-peer borrow delta
matched = min(δBθ * λBθ , amount)
δBθ -= matched / λBθ
sP2P
θ (user) += matched / λγSθ
SP2P += matched / λγSθ
amount -= matched
repayθ(Mψ, matched)

//// Promote borrowers
(matched, _) = matchBorrowersθ(amount, maxGasForMatching)
sP2P
θ (user) += matched / λγSθ
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SP2P += matched / λγSθ
BP2P += matched / λγBθ
amount -= matched
repayθ(Mψ, matched)

// Pool supply

sPoolθ (user) += amount / λSθ
supplyθ(Mψ, amount)

6.2.2 Borrow

High-level description

1. Peer-to-peer borrow:

(a) Match peer-to-peer supply delta: Morpho “matches” the user
with the peer-to-peer supply delta and reduces it. This is done
first to keep the delta as low as possible. A withdraw on the pool
is performed to reduce the surplus of supply on the pool induced
by the peer-to-peer supply delta. Note that this allows responsive
users to skip the queue of users on the pool and be instantly
matched peer-to-peer.

(b) Promote suppliers: Morpho matches the incoming demand
with some supply on the pool. The matching engine tries to match
as much liquidity as possible from pool suppliers. A withdraw on
the pool is performed to disconnect the matched suppliers from
it.

2. Pool borrow:

(a) No matching process: The remaining demand is met on the
underlying pool with a call to borrow.

Formal description

borrowMθ (user, amount):
update_λMθ ()
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if amount * pθ > borrowing_capacityM(a):
return

initialAmount = amount

// Peer-to-peer borrow

//// Match peer-to-peer supply delta
matched = min(δSθ * λSθ , amount)
δSθ -= matched / λSθ
bP2P
θ (user) += matched / λγBθ
BP2P += matched / λγBθ
amount -= matched
withdrawθ(Mψ, matched)

//// Promote suppliers
(matched, _) = matchSuppliersθ(amount, maxGasForMatching)
bP2P
θ (user) += matched / λγBθ
SP2P += matched / λγSθ
BP2P += matched / λγBθ
amount -= matched
withdrawθ(Mψ, matched)

// Pool borrow

bPoolθ (user) += amount / λBθ
borrowθ(Mψ, amount)

transferθ(Mψ, user, initialAmount)

6.2.3 Withdraw

High-level description

1. Pool withdraw:

(a) No matching process: If some of the user’s liquidity is supplied
on the pool, Morpho withdraws the corresponding part of its po-
sition on the underlying pool. It favors this option to maximize
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the user’s matched peer-to-peer liquidity and, thus, their capital
efficiency. A withdraw on the underlying pool is performed.

(b) Reduce peer-to-peer supply delta: Morpho reduces the peer-
to-peer supply delta if there is one. It favors this option before
the transfer withdraw to minimize the delta. A withdraw on the
pool is performed to reduce the peer-to-peer supply delta.

2. Peer-to-peer withdraw:

(a) Transfer withdraw:
i. Promote suppliers: If the user is matched peer-to-peer,

Morpho replaces him with other pool suppliers. It favors this
option before the breaking withdraw to maximize the total
peer-to-peer liquidity. The matching engine tries to match as
much liquidity as possible from pool suppliers. The liquidity
is retrieved by a call to withdraw on the underlying pool.

(b) Breaking withdraw:
i. Demote borrowers: Morpho breaks the peer-to-peer credit

lines of the withdrawing user with the matched borrowers and
reconnects them to the pool. The matching engine tries to un-
match as much debt as possible from peer-to-peer borrowers.
A borrow on the pool is performed to reconnect the borrow-
ers to the pool. The borrowed assets are transferred to the
withdrawer.

ii. Increase peer-to-peer borrow delta: Suppose the gas
available for matching was not enough to free enough liquid-
ity. In that case, Morpho still performs the breaking with-
draw, reconnecting the peer-to-peer borrowers to the pool via
a borrow on the pool, and increases the peer-to-peer borrow
delta. A part of the peer-to-peer matched borrow is now on
the pool, and the indexes will be updated accordingly from
now, growing at a higher rate.

Formal description

withdrawMθ (user, amount):
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update_λMθ ()
if amount * Fθ * pθ > borrowing_capacityM(user):

return
initialAmount = amount

// Pool withdraw

withdrawnFromPool = min(amount, sPoolθ (user) * λSθ )
sPoolθ (user) -= withdrawnFromPool / λSθ
amount -= withdrawnFromPool
withdrawθ(Mψ, withdrawnFromPool)

// Reduce peer-to-peer supply delta
matched = min(δSθ * λSθ , amount)
δSθ -= matched / λSθ
sP2P
θ (user) -= matched / λγSθ
SP2P -= matched / λγSθ
amount -= matched
withdrawθ(Mψ, matched)

// Peer-to-peer withdraw

//// Transfer withdraw

// Promote suppliers
(matched, gasLeft) = matchSuppliersθ(amount, maxGasForMatching)
sP2P
θ (user) -= matched / λγSθ

amount -= matched
withdrawθ(Mψ, matched)

//// Breaking withdraw

// Demote borrowers
(unmatched, _) = unmatchBorrowersθ(amount, gasLeft)
// Increase peer-to-peer borrow delta
if amount - unmatched > 0:

δBθ += (amount - unmatched) / λBθ
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SP2P -= amount / λγSθ
BP2P -= unmatched / λγBθ
sP2P
θ (user) -= amount / λγSθ

borrowθ(Mψ, amount)

transferθ(Mψ, user, initialAmount)

Notice that the gasLeft value returned from the call to matchSuppliers
determines how much gas the call to unmatchBorrowers is allowed to con-
sume.

6.2.4 Repay

High-level description

1. Pool repay:

(a) No matching process: If some of the user’s debt is borrowed
from the pool, Morpho repays liquidity from the underlying pool.
It favors this option to maximize the user’s matched liquidity and
capital efficiency. A repay is performed on the underlying pool.

(b) Reduce peer-to-peer borrow delta Morpho reduces the peer-
to-peer borrow delta if there is one. It favors this option before
the transfer repay to minimize the delta. A repay on the pool is
performed to reduce the peer-to-peer borrow delta.

2. Fee repay: The fee charged by Morpho is accounted when users repay
their peer-to-peer positions. The total amount of the fee accumulated
over all the users can be computed by subtracting the real amount
(subtracting the delta) of supply in peer-to-peer to the real amount
of borrow in peer-to-peer. This difference comes from the reserve fac-
tor which is making the peer-to-peer borrow index grow at a higher
speed than the peer-to-peer-supply index. The peer-to-peer position of
the user is updated accordingly to the fee that is repaid, making this
operation seamless when interacting with the protocol.

3. Peer-to-peer repay:

(a) Transfer repay:



6 PEER-TO-PEER DELTA MECHANISM 60

i. Promote borrowers: If the user is matched peer-to-peer,
Morpho replaces the peer-to-peer credit lines with other pool
borrowers. It favors this option before the breaking repay
to maximize the total peer-to-peer liquidity. The matching
engine tries to match as much debt as possible from pool
borrowers. A repay on the pool is performed to cut those
borrowers debt on the pool.

(b) Breaking repay:
i. Demote suppliers: Morpho breaks the peer-to-peer credit

lines of the repaying user with the remaining matched suppli-
ers and deposits the unmatched liquidity on the underlying
pool. The matching engine tries to unmatch as much liquid-
ity as possible from peer-to-peer suppliers. Morpho supply
on the underlying pool, to reconnect the suppliers to the pool.

ii. Increase peer-to-peer supply delta: If the gas available
for matching was not enough to free enough liquidity, Morpho
still performs the breaking repay (reconnection of peer-to-peer
suppliers by a supply on the pool) and increases the peer-to-
peer supply delta. A part of the peer-to-peer matched supply
is now on the pool, and the indexes will be updated accord-
ingly from now, growing at a lower rate.

Formal description

repayMθ (user, amount):
update_λMθ ()
if amount > bP2P

θ (user) * λγ
B + bPool(user) * λB:

return
transferθ(user, Mψ, amount)

// Pool repay

repaidOnPool = min(amount, bPoolθ (user) * λBθ )
bPoolθ (user) -= repaidOnPool / λBθ
amount -= repaidOnPool
repayθ(Mψ, repaidOnPool)
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// Reduce peer-to-peer borrow delta
matched = min(δBθ * λBθ , amount)
δBθ -= matched / λBθ
bP2P
θ (user) -= matched / λγBθ
BP2P -= matched / λγBθ
amount -= matched
repayθ(Mψ, matched)

// Fee repay
totalFee = (BP2P ∗ λγBθ − δBθ ∗ λBθ )− (SP2P ∗ λγSθ − δSθ ∗ λSθ )
feeRepaid = min(totalFee, amount)
bP2P
θ (user) -= feeRepaid / λγBθ
BP2P -= feeRepaid / λγBθ
amount -= feeRepaid

// Peer-to-peer repay

//// Transfer repay

// Promote borrowers
(matched, gasLeft) = matchBorrowersθ(amount, maxGasForMatching)
bP2P
θ (user) -= matched / λγBθ

amount -= matched
repayθ(Mψ, matched)

//// Breaking repay

// Demote suppliers
(unmatched, _) = unmatchSuppliersθ(amount, gasLeft)
// Increase peer-to-peer supply delta
if amount - unmatched > 0:

δSθ += (amount - unmatched) / λSθ
SP2P -= unmatched / λγSθ
BP2P -= amount / λγBθ
bP2P
θ (user) -= amount / λγBθ

supplyθ(Mψ, amount)
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6.3 Impact on rates

Assume that λγS and λγB are the peer-to-peer supply index and peer-to-peer
borrow index. This notation is introduced to take into account the delta
mechanism (in addition to the reserve factor and the peer-to-peer cursor).
We want to compute those indexes. We define the supply and borrow share
of the delta as follows:

γS = δS · λS

SP2P · λγS

γB = δB · λB

BP2P · λγB

We want the part of the matched liquidity corresponding to the delta to
grow at a speed that depends on the pool rate (rS and rB). The rest should
to grow at a speed that depends on the peer-to-peer rate (rρS and rρ

B). It
implies that the resulting rates are, for the supply indexes:

rγ
S = (1− γS)rρS + γSrS

= (1− γS)((1− α + ρα)rS + (α− ρα)rB) + ρrS

= (1− (1− γS)(1− ρ)α)rS + (1− γS)(1− ρ)αrB

and for the borrow indexes:

rγ
B = (1− γB)rρB + γBrB

= (1− γB)((1− ρ)(1− α)rS + (ρ+ α− ρα)rB) + γBrB

= (1− γB)(1− ρ)(1− α)rS + (1− (1− γB)(1− ρ)(1− α))rB

Let t, t′ ∈ N with t′ < t. Using theorem 5.2.1, we get:

λγ
S

t ≈ λγ
S

t′ [(1− (1− γSt′ )(1− ρ)α)λ
S
t

λSt′
+ (1− γSt′ )(1− ρ)αλ

B
t

λBt′
]

λγ
B

t ≈ λγ
B

t′ [(1− γBt′ )(1− ρ)(1− α)λ
S
t

λSt′
+ (1− (1− γBt′ )(1− ρ)(1− α))λ

B
t

λBt′
]

Those formulas are efficient computations that come from approximating
the desired rates when taking into account the reserve factor and the delta
mechanism. The Morpho protocol does not update the rates but updates the
indexes instead, using the formulas above.
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λγ
S

t = λγ
S

t′ [(1− (1− γSt′ )(1− ρ)α)λ
S
t

λSt′
+ (1− γSt′ )(1− ρ)αλ

B
t

λBt′
] (9)

λγ
B

t = λγ
B

t′ [(1− γBt′ )(1− ρ)(1−α)λ
S
t

λSt′
+ (1− (1− γBt′ )(1− ρ)(1−α))λ

B
t

λBt′
] (10)

To sum up, the pool’s spread is ∆ = rB− rS and two factors can increase
Morpho’s peer-to-peer spread: the reserve factor and the deltas. The differ-
ence rB−rα is denoted by ∆B in the following diagram and the reserve factor
ρ can be seen as a proportion of the improvement that is taken on the bor-
row and supply side, without taking into account the deltas. Similarly, the
peer-to-peer deltas can be seen as the proportion of the peer-to-peer amount
that is actually on the pool. We see that those two factors are multiplicative:
the proportion of the improvement that is lost on the rate rγB is given by
1 − (1 − ρ)(1 − γB). We can thus see the reserve factor as a cut on the
improvement compared to the pool, taking into account the deltas.

The following theorem gives us an intuition about how the deltas evolve
if they are not reduced by new interactions with the protocol.
Theorem 6.3.1. Between two updates with no other interaction on Morpho,
the share of the supply delta γS is decreasing, and the share of the borrow
delta γB is increasing.
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Proof. We make use of the previous notations and formulas 9 and 10. Since
we are looking at the delta shares between two updates with no interaction
with Morpho in between, the quantities δS, δB, SP2P , and BP2P are constant.
Thus, we only have to show that:

λSt′

λγ
S

t′

· λ
γS

t

λSt
≥ 1

λBt′

λγ
B

t′

· λ
γB

t

λBt
≤ 1

We have

λSt′

λγ
S

t′

· λ
γS

t

λSt
= λSt′

λSt
· [(1− γBt′ )(1− ρ)(1− α)λ

S
t

λSt′
+ (1− (1− γBt′ )(1− ρ)(1− α))λ

B
t

λBt′
]

= (1− γBt′ )(1− ρ)(1− α) + (1− (1− γBt′ )(1− ρ)(1− α)) · λ
B
t

λBt′
· λ

S
t′

λSt

Since the borrow index grows more rapidly on the pool than the supply index,
we have λBt

λB
t′
· λ

S
t′
λSt
≥ 1. This implies that

λSt′

λγ
S

t′

· λ
γS

t

λSt
≤ (1− γBt′ )(1− ρ)(1− α) + (1− (1− γBt′ )(1− ρ)(1− α)) = 1

�

6.4 Non-liquidation theorem
With the addition of the delta mechanism, the lemmas 3.4.1 and 5.3.2 no
longer hold. We redefine them to prove the non-liquidation theorem again.

Lemma 6.4.1. (Pool position’s integrity) Morpho’s position on the pool is
always the sum of the positions on the pool of all its users, plus the deltas.

∀θ ∈ ΘMψ
, sθ(Mψ) =

∑
u

sPoolθ (u) + δSθ

∀θ ∈ ΘMψ
, bθ(Mψ) =

∑
u

bPoolθ (u) + δBθ

Proof. A proof similar to the one of the lemma 3.4.1 applies here also. �
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Lemma 6.4.2. (Peer-to-peer inequality) The sum of the suppliers’ peer-to-
peer balances minus the peer-to-peer supply delta is always less than or equal
to the sum of the borrowers’ peer-to-peer balances minus the peer-to-peer bor-
row delta.

∀θ ∈ ΘMψ
,
∑
u

sP2P
θ (u) · λγSθ − δSθ · λSθ ≤

∑
u

bP2P
θ (u) · λγBθ − δBθ · λBθ

Proof. We can do the same kind of proof as for 3.4.2.

Base case The inequality is clearly verified at deployment.

Induction step Let σi ∈ Σ be a state where the inequality is verified. Let
a transition which transits to the state σr ∈ Σ.

We treat the case where the transition is associated to the function call to
withdraw. By now, we only consider the market θ, as others are untouched,
so theta can be omitted as a subscript. Let (θ, u, x) ∈ Dwithdraw be the input
for this function call.

We first consider the update of the indexes and try to prove that the
equality still holds at the state σr′ , an intermediary state just after the indexes
update. Remark that the variables δS and SP2P do not change when updating
the index. This means that we have σr′(δS) = σi(δS) and σr′(SP2P ) =
σi(SP2P ).

We note σi(γS) for:
σi(δS) · σi(λS)

σi(SP2P ) · σi(λγS)
Let us first consider this relation:

L =
∑
u

σr′(sP2P
θ (u)) · σr′(λγSθ )− σr′(δSθ ) · σr′(λSθ )

=
∑
u

σi(sP2P
θ (u)) · σi(λγSθ ) · σr

′(λγSθ )
σi(λγSθ ) − σi(δ

S
θ ) · σi(λSθ ) · σr

′(λSθ )
σi(λSθ )

=
∑
u

σi(sP2P
θ (u)) · σi(λγSθ ) ·

(
σr′(λγSθ )
σi(λγSθ ) − σi(γ

S
θ ) · σr

′(λSθ )
σi(λSθ )

)
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Translating the formula 7 into this state setting, we get:

σr′(λρ
S

θ )
σi(λρ

S

θ )
= (1− (1− ρSθ )α) · σr

′(λSθ )
σi(λSθ ) +

(1− ρSθ )α · σr
′(λBθ )

σi(λBθ )

Similarly, for 9, we get:

σr′(λγ
S

θ )
σi(λγ

S

θ )
= (1− (1− σi(γSθ ))(1− ρSθ )α) · σr

′(λSθ )
σi(λSθ ) +

(1− σi(γSθ ))(1− ρSθ )α · σr
′(λBθ )

σi(λBθ )

so:
σr′(λγSθ )
σi(λγSθ ) = (1− σi(γSθ )) · σr

′(λρSθ )
σi(λρSθ ) + σi(γSθ ) · σr

′(λSθ )
σi(λSθ )

Using this last equality, we get:

L =
∑
u

σi(sP2P
θ (u)) · σi(λγSθ ) · (1− σi(γSθ )) · σr

′(λρSθ )
σi(λρSθ )

= σr′(λρSθ )
σi(λρSθ )

(∑
u

σi(sP2P
θ (u)) · σi(λγSθ )− σi(δSθ ) · σi(λSθ )

)

Similarly:

R =
∑
u

σr′(bP2P
θ (u)) · σr′(λγBθ )− σr′(δBθ ) · σr′(λBθ )

= σr′(λρBθ )
σi(λρBθ )

(∑
u

σi(bP2P
θ (u)) · σi(λγBθ )− σi(δBθ ) · σi(λBθ )

)

Additionally, we notice that the growth of the peer-to-peer supply index
without taking into account the deltas is smaller than the growth of the
peer-to-peer borrow index:

σr′(λρS)
σi(λρS) ≤

σr′(λρB)
σi(λρB)
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So, because the inequality is verified at the state σi:∑
u

σr′(sP2P
θ (u)) · σr′(λγSθ )− σr′(δSθ ) · σr′(λSθ )

≤
∑
u

σr′(bP2P
θ (u)) · σr′(λγBθ )− σr′(δBθ ) · σr′(λBθ )

We proved that the inequality holds at σr′ if it held at σi. Now we will focus
on σr, the state at the end of the transition. From now, we will write λS for
σr(λSθ ) = σr′(λSθ ), and we do the same for σr(λBθ ), σr(λγSθ ) and σr(λγBθ ).

We do not go through the pool withdraw step, as it does not change the
peer-to-peer balance of any user nor any delta. Let us consider the reduce
peer-to-peer supply delta step. Let xδS be the amount that is reduced
from the delta in the underlying unit (the first matched in the pseudo-code).
The peer-to-peer supply delta is reduced by xδS/λS, and the peer-to-peer
supply balance of the user is reduced by xδS/λγS .

Consider also the promote suppliers step. Let xµS be the total amount
matched in underlying by matchSuppliers (the second matched in the pseudo-
code). The peer-to-peer supply balance of the user is reduced by xµS/λγS .
And the sum of the other suppliers’ balances is increased by xµS/λγS .

Finally, consider the demote borrowers step. Let xµB be the total
amount unmatched in underlying by unmatchBorrowers (unmatched in the
pseudo-code). Let xδB be the amount that is added to the borrow delta in
the underlying unit (amount - unmatched in the pseudo-code). The peer-
to-peer supply balance of the user is reduced by (xµB +xδB)/λγS , and the sum
of the peer-to-peer borrow balances is reduced by xµB/λγB . The peer-to-peer
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borrow delta is increased by xδB/λB. Finally:

L =
∑
u

σr(sP2P (u)) · λγS − σr(δS) · λS

=
(∑

u

σr′(sP2P (u))− xδS

λγS
− xµS

λγS
+ xµS

λγS
− (xµB + xδB)

λγS

)
· λγS−(

σr′(δS)− xδS

λS

)
· λS

=
∑
u

σr′(sP2P (u)) · λγS − σr′(δS) · λS − xµB − xδB

R =
∑
u

σr(bP2P (u)) · λγB − σr(δB) · λB

=
(∑

u

σr′(bP2P (u))− xµB

λγB

)
· λγB −

(
σr′(δB) + xδB

λB

)
· λB

=
∑
u

σr′(bP2P (u)) · λγB − σr′(δB) · λB − xµB − xδB

So:
∑
u

σr(sP2P (u)) · λγS − σr(δS) · σr(λS)

≤
∑
u

σr(bP2P (u)) · λγB − σr(δB) · σr(λB)

We could do the same proofs for all the other external functions and for
Γtick. �

We come back to the non-liquidation theorem 3.4.1, with an updated
proof taking into account the delta mechanism.

Theorem 6.4.1 (Non-liquidation with deltas). If Morpho is equipped with a
working liquidation system, then Morpho’s position on pool is not liquidatable,
even if in the presence of deltas. Thus the following inequality still stands:∑

θ

pθ · bθ(Mψ) · λBθ ≤
∑
θ

pθ · Fθ · sθ(Mψ) · λSθ

Proof. The proof is similar to the one without the reserve factor and the
delta mechanism. What is changing is mostly the assumptions.
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From the peer-to-peer inequality lemma 6.4.2, we know that, for each
token θ, the following inequality stands:∑

u

bP2P
θ (u) · λγBθ − δBθ · λBθ ≥

∑
u

sP2P
θ (u) · λγSθ − δSθ · λSθ

We also get the following equalities from the pool position’s integrity lemma 6.4.1:

bθ(Mψ) = δBθ +
∑
u

bPoolθ (u)

sθ(Mψ) = δSθ +
∑
u

sPoolθ (u)

We still have the following inequality from the assumptions of the theorem:∑
θ

pθ ·
∑
u

ωBθ (u) ≤
∑
θ

pθ · Fθ ·
∑
u

ωSθ (u)

Let us call L and R the left-hand side and the right-hand side of the previous
inequality, and reduce them. For L:

L =
∑
θ

pθ ·
∑
u

ωBθ (u)

=
∑
θ

pθ ·
∑
u

(bPoolθ (u) · λBθ + bP2P
θ (u) · λγ

B

θ )

=
∑
θ

pθ · ((bθ(Mψ)− δBθ ) · λBθ +
∑
u

bP2P
θ (u) · λγBθ )

=
∑
θ

pθ · bθ(Mψ) · λBθ +
∑
θ

pθ · (
∑
u

bP2P
θ (u) · λγBθ − δBθ · λBθ )

≥
∑
θ

pθ · bθ(Mψ) · λBθ +
∑
θ

pθ · (
∑
u

sP2P
θ (u) · λγSθ − δSθ · λSθ )

And for R:

R =
∑
θ

pθ · Fθ ·
∑
u

ωSθ (u)

=
∑
θ

pθ · Fθ ·
∑
u

(sPoolθ (u) · λSθ + sP2P
θ (u) · λγSθ )

=
∑
θ

pθ · Fθ · ((sθ(Mψ)− δSθ ) · λSθ +
∑
u

sP2P
θ (u) · λγSθ )

=
∑
θ

pθ · Fθ · sθ(Mψ) · λSθ +
∑
θ

pθ · Fθ · (
∑
u

sP2P
θ (u) · λγSθ − δSθ · λSθ )
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So, because Fθ ≤ 1, we can still conclude that:∑
θ

pθ · bθ(Mψ) · λBθ ≤
∑
θ

pθ · Fθ · sθ(Mψ) · λSθ

�
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7 Conclusion
The Morpho protocol is an improvement of the established protocols for
loanable funds (see section 2) that have seen a significant rise in popularity
in the past years. Such protocols have numerous advantages, including high
liquidity with the possibility to withdraw or borrow significant amounts at
any time. They also define robust risk parameters which minimize the risk of
insolvencies and liquidations in high-volatility markets but require notably
leaving a fraction of the liquidity idle on the contract. The main idea of
Morpho, explained in section 3, is to improve capital efficiency by matching
peer-to-peer the incoming liquidity as much as possible while ensuring the
same liquidity and at least the same rates as the underlying lending pool
by aggregating the remaining positions on it. In doing so, we are faced
with different challenges. First, we should ensure that the protocol enjoys
the same liquidity as the underlying lending pool. It amounts to finding
a fallback mechanism, notably including the possibility to withdraw when
matched peer-to-peer. A solution to this problem was given in section 3.3,
with detailed steps explaining the process. Second, we should make sure
that the position taken on the pool is safe. This point has been formalized as
the non-liquidation theorem, and a clear proof was given in section 3.4 and
refined later in section 6.4. Third, we need relevant rates and a robust system
to account for them. In section 5, we turn to a general analysis of it, and
we prove that Morpho users enjoy improved rates compared to users of the
underlying pool. Finally, one last challenge is to ensure that the protocol can
scale by bounding the gas usage of any transaction, no matter its size. This
problem comes from the matching engine, described in section 4, as it has to
scale with the number of users. Section 6 returns to the scalability problem
with a solution called the delta mechanism, where proofs and previous results
are updated to consider this new mechanism.
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